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Identifying spot-like structures in large and noisy microscopy images is a crucial step to produce high quality results in
various life-science applications. Imaging-based spatial transcriptomics (iST) methods, in particular, critically depend
on the precise detection ofmillions of transcripts in images with low signal-to-noise ratio. Despite advances in computer
vision that have revolutionized many biological imaging tasks, currently adopted spot detection techniques are mostly
still based on classical signal processing methods that are fragile and require tedious manual tuning per dataset. In this
work, we introduce Spotiflow, a deep learning method that achieves subpixel-accurate localizations by formulating the
spot detection task as a multiscale heatmap and stereographic flow regression problem. Spotiflow can be used for 2D
images and 3D volumetric stacks and can be trained to generalize across different imaging conditions, tissue types and
chemical preparations, while being substantially more time- andmemory-efÏcient than existing methods. We show the
efÏcacy of Spotiflow via extensive quantitative experiments on a variety of diverse datasets and demonstrate that the
enhanced accuracy of Spotiflow leads to meaningful improvements in the biological insights obtained from iST and
live imaging experiments. Spotiflow is available as an easy-to-use Python library as well as a napari plugin at https:
//github.com/weigertlab/spotiflow.
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Introduction
Many methods in the life sciences produce images
for which detecting and localizing spot-like objects
is a crucial step preceding specialized downstream
analyses. This problem, commonly referred to as
spot detection [1–4], has been the computational
basis of many methods in genomics over the last
decades [5, 6]. Recently, the advent of imaging-based
spatial transcriptomics (iST) has brought this task to
a significantly more challenging and computationally
demanding domain [7] (Fig. 1a). In iST, RNA molecules
are located in situ within large tissue sections during
sequential imaging cycles to generate gene expression
maps at subcellular resolution [8–10]. Popular iST
techniques such as MERFISH [8], seqFISH [10] or
HybISS [9] require the detection of millions of spots
in gigabyte-sized images with high accuracy, sensitivity,
and computational efÏciency. Due to the preservation
of the native tissue context, any spot detection method
has to address multiple imaging challenges such as
autofluorescence background, aspecific probe binding,

or inhomogeneous spot density (Supp. Video 1). High
sensitivity and accuracy are crucial because, for most iST
methods, transcript identity is encoded combinatorially
in the sequence of multiple multi-channel images across
different imaging rounds [8, 9]. As a result, suboptimal
spot detection performance in one channel or imaging
round can significantly reduce sensitivity and lead to
transcript identity misattribution [11]. Furthermore, the
advent of 3D-capable technologies such as STARmap [12]
or EASI-FISH [13] yields specific challenges such as
voxel anisotropy, asymmetrical axial profiles of the
point-spread function or depth-depending illumination.

Commonly used spot detection pipelines for iST
often rely on classical threshold-based methods such
as Laplacian-of-Gaussian (LoG) [14, 15] or radial
symmetry [16]. While these approaches perform well on
simulated or relatively clean data, they often struggle with
realistic images that exhibit artifacts, autofluorescence,
and varying contrast (Results). Although a few deep
learning-based methods have been proposed for this
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task [17–20], they are often hard to use, don’t provide
subpixel accuracy (with the notable exception of [19]),
and don’t scale to gigapixel-sized images. Moreover,
no existing learning-based method allows end-to-end
modelling of 3D volumes, with most of the methods
resorting to a suboptimal Z-blending strategy (e.g. [19])
(Results, [16]). Overall, the classical iST spot detection
methods currently used lack robustness in challenging
image conditions, are computionally inefÏcient for
large images, and require manual threshold tuning for
every channel and imaging round, which limits their
applicability and accuracy in large-scale iST experiments.

Here we introduce Spotiflow, a deep learning-based,
threshold-agnostic, and subpixel-accurate spot detection
method that outperforms other commonly usedmethods
on a variety of iST and non-iST modalities while being
up to an order-of-magnitude more time and memory
efÏcient. Spotiflow is trained to predict multiscale
Gaussian heatmaps and exploits a novel stereographic flow
regression task from which sub-pixel accurate detections
are obtained (Fig. 1b,c). Both tasks can be naturally
extended to an arbitrary number of dimensions, allowing
Spotiflow to model 3D volumes directly and efÏciently
without any need of extensive postprocessing. Our
method generalizes well to unseen samples and removes
the requirement of manual threshold tuning in typical
end-to-end iST workflows. Spotiflow is available as
an easy-to-use Python library and as a napari [21]
plugin (Supp. Video 2).

Results
Deep stereographic flow regression
To compute spot coordinates from a given microscopy
image, Spotiflow uses a convolutional neural network
(U-Net [22]) that is trained to predict two distinct
but synergetic targets: Gaussian heatmaps and the
stereographic flow (Fig. 1b, Supp. Fig. 1). For simplicity,
we focus on the 2D case, but we note that the extension
to n dimensions is straightforward (see Methods for
the 3D case). The first target, Gaussian heatmaps[23],
are real-valued images of different resolutions in which
each pixel can be interpreted as the probability of that
position being a spot center (Fig. 1c, Supp. Fig. 1,
Supp. Note 3.1). We predict a multiscale hierarchy
of heatmaps by processing their respective network
decoder feature maps, which jointly contributes to the
optimized training loss. We found this approach to
be beneficial for training convergence, especially when
only few spots are present (Methods, Supp. Fig. 1,
Supp. Note 1). The second target, which we denote
stereographic flow, is an alternative representation of the
closest-spot vector field that, for every position, points
to the closest spot. The stereographic flow is defined as
the inverse stereographic projection of the n-dimensional

local offset vector field in R
n onto the n-sphere Sn ⊂

R
n+1. Crucially, this embedding maps all offsets for

points far away from spot locations to a common value
(specifically, the south pole of the unit sphere in the 2D
case) therefore avoiding the problem of indeterminate
offset prediction for distant locations (Fig. 1c, Methods,
Supp. Fig. 2, Supp. Note 3.1, Supp. Video 3). To produce
the final spot coordinates from a given prediction, we
use the peaks of the highest-resolution heatmap to
obtain preliminary spot locations, which we refine with
the inverted stereographic flow (Methods), achieving
subpixel precision and substantially lower localization
errors (Supp. Table 1).

Spotiflow achieves superior accuracy across imaging
domains
We systematically assessed the performance of
Spotiflow on multiple datasets in comparison
with other commonly used methods. Specifically,
we compared against the Laplacian-of-Gaussian
(LoG/starfish) implementation used in the popular
iST framework starfish [14], Big-FISH [15], the radial
symmetry-based method RS-FISH [16], and the deep
learning-based method deepBlink [19]. We first
generated two synthetic datasets of diffraction-limited
spots (Fig. 1d): one using a simple Gaussian PSF model
(synthetic-simple), and another using a more realistic
image formation model including autofluorescence and
optical aberrations (synthetic-complex, Methods). We
found that on synthetic-simple all methods achieved
close to perfect scores (F1-score of 0.967–0.995),
which is expected due to the limited complexity of the
simulated images (Fig. 1d, Supp. Table 3). However,
on the more realistic synthetic-complex dataset, classical
methods showed a substantial performance drop
(F1 = 0.758 − 0.836) while Spotiflow achieved
the best detection accuracy (F1 = 0.929) followed
by the other deep learning-based method (deepBlink,
F1 = 0.915). This demonstrates the advantages of
learning approaches for more complex datasets and
highlights the limitations of overly simplistic simulations
in benchmark scenarios. Similarly, when generating
images at different noise conditions and spot densities,
we found Spotiflow to consistently outperform other
methods, demonstrating its effectiveness in adverse
imaging conditions (Supp. Fig. 3).
We next assessed Spotiflow on several publicly
available and in-house generated manual annotated
datasets from multiple iST modalities (MERFISH,
HybISS, smFISH, Supp. Table 2, Supp. Fig. 4). We
observed that Spotiflow again outperforms all other
methods, including deepBlink, achieving a consistently
high detection rate and localization accuracy on all
modalities (Fig. 1d, Supp. Fig. 5, Supp. Note 3.3). The
performance difference to threshold-based classical
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methods is particularly prominent for the HybISS
and MERFISH datasets, which contain substantial
background signal (F1 = 0.796/0.861 vs. 0.531/0.790
for e.g . LoG-starfish). Interestingly, a Spotiflow model
jointly trained on all diverse datasets (general) achieves
an almost equal performance to models trained on
individual datasets, demonstrating the inherent capacity
of Spotiflow to capture diverse image characteristics in
a single model. We evaluated the utility of Spotiflow
for non-iST modalities by annotating two datasets from
single frames of live-cell recordings of HeLa cells with
labeled telomeres and the telomeric repeat containing
RNA TERRA (Methods). As before, Spotiflow
outperforms all other methods both in detection quality
and localization accuracy (Fig. 1d), demonstrating the
general applicability of our method beyond the iST
domain. In relation to the training data requirements
of the model, we observed that fine-tuning based on
synthetic data can substantially reduce the annotation
requirement for novel out-domain datasets, quickly
approximating the accuracy of our benchmark training
dataset composed of hundreds of annotated 512× 512
images. Specifically, when we fine-tuned a Spotiflow
model initially pre-trained on synthetic-complex with
an incrementally increasing number of out-domain
training images from the live-cell dataset Terra, we found
that already as few as four training images sufÏced to
achieve good accuracy (F1-score 0.738 vs. 0.174 when
training from scratch, Fig. 1f, Supp. Fig. 6). This result
underscores the efÏciency of Spotiflow models in
adapting to different modalities and out-of-distribution
(OOD) samples with minimal annotation, facilitating
rapid adoption by end-users.

Spotiflow produces robust and accurate gene
expression maps in iST
We next investigated the generalizablility of the 2D
pre-trained models to the variability in sample types,
which can encompass differing signal-to-noise ratios,
unique artifacts, and distinct background features.
We trained a Spotiflow model on HybISS-processed
mouse embryonic brain sections and applied it on a
variety of out-of-distributionHybISS samples originating
from different tissues and probesets (mouse embryonic
limb, frog tadpole developing limb, mouse gastruloid,
radial glia progenitor cell cultures). Even though
these images exhibit noticeably different structures with
varying backgrounds and contrast compared to the
training images, we found that the pre-trained model
yielded qualitatively excellent transcript detection results
without the need of any threshold-tuning (Fig. 2a,b and
Supp. Fig. 7).
We then assessed the impact of the increased robustness
and accuracy of Spotiflow for a full end-to-end
iST experiment (Methods) by using a starfish gene

decoding pipeline where we swapped the spot detection
component from the default LoG detector to Spotiflow.
We processed sections of developing mouse brains at
different timepoints, E12.5 (Fig. 2c) and E13.5 (Fig. 2d),
using HybISS to spatially resolve 199 genes involved
in neurodevelopment (Methods). The resulting gene
expression maps obtained with Spotiflow show a
gene-dependent spatial pattern that is consistent with
previous results (Fig. 2c, Fig. 2d, Supp. Fig. 8). While for
intensity-based methods (e.g . LoG/starfish) the quality
of the obtained gene expression maps is highly sensitive
to the used threshold and thus requires channel-specific
threshold choices, Spotiflow is threshold agnostic and
does not require anymanual tuning (Fig. 2d, Supp. Fig. 8).
In addition, we found that in this end-to-end iST
setting, Spotiflow is an order of magnitude more time
and memory efÏcient than the default starfish pipeline,
especially for large images (Fig. 2e,f).

Spotiflow extends beyond single image spot detection
To demonstrate Spotiflow’s impact on tasks beyond
single image spot detection, we next applied it to a
single-molecule detection and tracking task. Here, we
considered a dataset (TERRA) where both telomeres and
noncoding RNA molecules where recorded in live HeLa
cells along a time lapse experiment (Methods, Fig. 3a).
The resulting image set presents different challenges
compared to iST images, such as photobleaching causing
the temporal decrease of image contrast, non-specific
dot-like structures inside the cell nucleus, and unspecific
signal that can lead to erroneous and unrealistic short
tracks (Fig. 3a). After detecting spots with Spotiflow,
we tracked them using TrackMate [24] (Methods).
We also detected spots with deepBlink and tracked
them for comparison. For both telomeres and TERRA,
the robustness of Spotiflow’s detections at changing
imaging conditions led to longer, more consistent
(gap-free) tracks compared to deepBlink (Fig. 3b,c,
Supp. Fig. 9, Supp. Video 4), demonstrating the
significant impact on the estimates of biological
parameters our method is able to provide.

We next hypothesized that the content-awareness of
Spotiflow could be leveraged to solve tasks which
are infeasible for classical spot detection methods. To
explore this we examined whether Spotiflow could
effectively differentiate between transcript-derived spots
and spot-like patterned autofluorescence structures,
such as those from lipofuscin [25, 26], that often
render data collected from adult brain unusable.
Applying Spotiflow to a HybISS-processed adult mouse
brain section with a specific bootstrapping scheme
(Methods, Fig. 3d,e) we achieved a 2x decrease in
the number of autofluorescent spots detected in one
channel (Fig. 3e) compared to intensity-based spots
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removal.This is particularly notable considering that such
a discrimination task is challenging even to experienced
human annotators.
Spotiflow yields robust and scalable gene localization
in 3D
We next assessed the 3D version of Spotiflow, which
uses 3D convolutions and 3D extensions of the two
target tasks described before to natively allow prediction
on volumetric data. To quantitatively benchmark
performance we created realistic synthetic volumetric
data (Fig. 4a, Methods) and compared against both
against 3D versions of the classical methods (LoG,
Big-FISH, RS-FISH) as well as the 2D deep learning
methods using the Z-blending strategy proposed by the
authors of [19]. For Spotiflow, we included both the
native 3D model (simply Spotiflow) as well as a 2D
model using the same Z-blending strategy (Spotiflow
(2D)). Overall Spotiflow achieves the highest score
(F1 = 0.882), with a substantial advantage compared
to the second-best performing method (Big-FISH, F1 =
0.683, Fig. 4b, Supp. Table 4). Notably, the 2D
learning-based models with a blending strategy clearly
underperform (F1 = 0.102 and F1 = 0.311)
compared to a native 3D method (Fig. 4b, Supp. Table 4),
highlighting the benefits of native volumetric prediction.
We further show that Spotiflow alleviates the need of
running powerful deconvolution techniques to enhance
the spot detection task on the synthetic dataset used in
[27] (Supp. Fig. 10). As in the 2D case, Spotiflow scales
to large volumes, taking≈ 3 and a half minutes to process
a stack containing 232 voxels, which we could not process
with the other methods on the same hardware (Fig. 4c).
To check the performance on real volumetric data,
we used Spotiflow to detect POUIV transcripts of
an smFISH volume of Platynereis dumerilii (Fig. 4d).
As we demonstrated for the 2D case, not too many
labelled volumes are necessary to achieve a successful
domain transfer, so we first pre-trained a Spotiflow
model on the synthetic volumetric data (Fig. 4a) which
we then fine-tuned on a few manually annotated
subvolumes (9 for fine-tuning, 6 for validation) of a
different sample. Platynereis dumerilii samples may
exhibit highly intense and structured autofluorescence
patterns at specific wavelengths, which pose a challenge
to intensity-based methods (Fig. 4d). In order to model
them appropriately with Spotiflow, it was sufÏcient
to add two crops of unlabeled autofluorescence regions
to the fine-tuning data, highlighting the capability
of the method to achieve performance gains without
any annotation burden (Fig. 4d). Compared to the
intensity-based method LoG, Spotiflow qualitatively
produced less autofluorescent detections (Fig. 4d) on a
comparable amount of spots. Moreover, irrespectively to
the LoG threshold chosen, Spotiflow achieved a higher

ratio of detections inside the tissue area (Fig. 4e), which
we use as a proxy of performance (Methods). We further
applied Spotiflow to a 159GB EASI-FISH volume of a
lateral hypothalamus section of a mouse brain [13] in
order to check transferrability and assess the scalability of
themethod. Remarkably, themodel fine-tuned on the 3D
smFISH data described above (i.e. EASI-FISH data was
not used during fine-tuning) (Fig. 4d) accurately detects
spots on the EASI-FISH stack (Fig. 4f, Supp. Fig. 11),
highlighting the generalization capabilities of themethod.
Moreover, running Spotiflow on the whole stack took
little less than an hour (Fig. 4f) on a single GPU, a similar
runtime to the fast Spark implementation of RS-FISH (as
reported in [16]). Nevertheless, we achieved a runtime of
less than 10 minutes by distributing the prediction across
8 A100 GPUs (Fig. 4f, Methods), allowing for extremely
fast inference on large volumes in scenarios where GPU
compute clusters are available.
We finally assessed whether Spotiflow can be used
on a completely different domain by tracking lipid
droplets in label-free microscopy volumetric movies
(Fig. 4g) of patterned COS7 cells. Similarly to the
3D smFISH case, we annotated the first two frames
of one 3D movie in order to fine-tune a Spotiflow
model that had been pre-trained on synthetic data. This
model was then successfully applied to an out-of-training
3D movie, with Spotiflow being able to accurately
detect lipid droplets despite the little fine-tuning data
used, allowing successive tracking with TrackPy [28].
This proof of concept opens exciting possibilities for
the successful application of Spotiflow to label-free
volumetric microscopy techniques.

Spotiflow is an efÏcient and user-friendly method for
2D and 3D spot detection
Finally, training a Spotiflow model is fast (∼1h on a
single GPU for a 2D model) and our implementation
based on PyTorch[29] is an order-of-magnitude faster
and over three times more memory efÏcient than
commonly used methods especially for larger images,
with e.g . prediction time of 80s for an image of size 32k×
32k vs. 1000s for LoG/starfish (Fig. 1e, Supp. Note 3.4).
To facilitate the adoption by end-users, we provide an
easy-to-use API (Fig. 5a), extensive documentation,
distribute Spotiflow as an easy-to-use napari[21]
plugin (Fig. 5b), and provide several pre-trained
models that can be used out-of-the-box for a variety
of datasets (Supp. Video 2). We also offer our
implementation for easily parallelizing across multiple
GPUs during inference, which enables quasi-linear
speed-up w.r.t. the number of GPUs (Fig. 4e), as well
as allow predicting on Zarr data on cloud storage (e.g.
AWS S3). We also provide an integration with the
popular software Starfish[14] which easens the addition
of Spotiflow to existing iST pipelines, both for 2D and
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3D (Fig. 5c).

Discussion
In summary, Spotiflow delivers high quality detections
across a variety of iST modalities and surpasses both
commonly used and recently proposedmethods. Notably
we demonstrated on a diverse set of real benchmark
datasets that assessments relying solely on simple
synthetic data are insufÏcient to evaluate performance
regarding real world applications. Thus, methods
validated only on synthetic data may underperform
on real biological datasets, where a higher degree of
data complexity and variability is present. Spotiflow’s
ability to generalize well to OOD samples significantly
reduces the need for re-training or manual parameter
adjustments for new acquisition settings. Moreover,
its threshold-agnostic nature simplifies end-to-end iST
workflows by eliminating the need for manual tuning
of thresholds for each channel and imaging round,
often required to achieve optimal performance. These
features support the construction of unified pipelines
and standardized processing routines, which is crucial
in the current state of development of the field, with
different laboratories evolving protocols and acquiring
iST data with different imaging setups. Spotiflow’s
computational efÏciency, being an order of magnitude
faster and more memory-efÏcient than other techniques,
enables quick processing of large samples. This efÏciency
is critical for large-scale studies involving gigapixel-sized
images, as seen in many iST applications, and it is
ready to support extensive data collection campaigns to
build organism-sized atlases. In addition, our live-cell
imaging experiments indicate Spotiflow’s flexibility to
various microscopy modalities, and we foresee its broad
utility to other imaging-based methods where localized
structures need to be detected. Furthermore, Spotiflow
achieves state-of-the-art performance in 3D, overcoming
the bottleneck that is inherent to running deep learning
methods with 2D blending methods by instead natively
modelling the 3D data.
Finally, we anticipate that the presented stereographic
flow concept will impact other areas of image analysis
where the prediction of dense vector fields has been
successfully applied (e.g . cell segmentation [30, 31]).
Overall, we believe Spotiflow represents a significant
advancement in spot detection for imaging-based spatial
transcriptomics and, in general, for light microscopy
images and volumes, opening up new possibilities for
high throughput and high resolution spatial analyses.
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Figure 1: Fast, scalable, and accurate fluorescence spot detection with Spotiflow. a) Depiction of a common processing pipeline for imaging-based
spatial transcriptomics (iST) data, in which spot detection is a critical step. b) Spotiflow is trained to detect spots frommicroscopy images via two different
synergic tasks, multiscale heatmap regression and stereographic flow regression.c) The ground truth objects to be regressed are computed from point
annotations {pk}. First, a full-resolution Gaussian heatmap Y (0) is obtained by generating isotropic Gaussian distributions of variance σ2 centered at
spot locations. This Gaussian heatmap is further processed to obtain lower resolution versions, yieldingmultiscale heatmaps Y (l) , which are all regressed.
Second, a local vector fieldV = {vij} is built by placing a vector directed to the closest spot center at every pixel of the image. We obtain the stereographic
flow V ′ = {v′ij} by computing, position-wise, the inverse stereographic projection f of the local vector field. d) Benchmarking of spot detectionmethods
on different datasets, grouped by their modality (Synthetic, FISH, Live cell imaging). Shown is the distribution of F1 scores per image in the test set of every
dataset (higher is better, cf.Supp.Note3.2). Eachmethodwas trainedand tested individually in eachdataset except Spotiflow (general), whichwas trainedon
all datasets. A sample training image is depicted under each dataset. e) Runtime (top) andmemory (bottom) assessment for different methods at different
image sizes. Parameters of each method were calibrated so that the amount of detections were in the same order of magnitude. * RS-FISH not shown for
sizes >32k due to Java size-related limitations. RS-FISHmemory was not profiled as the implementation is not in Python. ** deepBlink could not be run for
sizes > 4k due to GPU memory limitations. f) F1 score on live-cell dataset Terra after fine-tuning a Spotiflow model pre-trained on synthetic-complex with
an incrementally increasing number of out-domain training images from Terra.
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Figure 2: Application of Spotiflow in a variety of imaging-based transcriptomics settings. a, b) Predictions of a pretrained Spotiflow model on two
out-of-distribution samples, a mouse embryonic developing limb (a) and a frog tadpole developing limb (b). The Spotiflow model was trained on the
HybISS dataset, consisting only of images of embryonic mouse brain embryos. c) Gene expression maps based on Spotiflow of an E12.5 mouse embryo
brainprocessedusingHybISS. Fivedifferent genes (Clu, Cyp26b1, Irs4, Rax,Wnt8b) involved inneurodevelopment overlaid on theDAPI channel are displayed.
The Spotiflow model used was trained on the HybISS dataset. d) Comparison of gene expression maps based on Spotiflow vs. the default LoG detector in
Starfish [14] of an E12.5mouse embryobrain processedusingHybISS. Depicted are results for threedifferent genes (Sfrp, Foxg1,Hoxb3). The Starfishdetector
is run at three different thresholds (0.2, 0.01 and 0.138, the latter being the optimal on the HybISS training dataset) as well as the Spotiflow model trained
on HybISS (using the default threshold). The last column contains an ISH reference of similar sections from the Allen Brain Atlas (ISH) for the three depicted
genes. e, f) Runtime (e) and memory (f ) assessment of both methods in an end-to-end setting. Depicted are wall-clock time (e) and peak CPU memory
usage (f ).
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Figure 3: General applications of Spotiflow: live-cell imaging and autofluorescence-aware training. a) Live-cell acquisition of HeLa cells with labeled
Telomeres (orange). b) Quantification of Telomere track length on three different experiments using deepBlink and Spotiflow to detect spots per frame,
which are then tracked using TrackMate [24]. Telomeres are expected to be stable throughout themovie, thus longer tracks are expected. c)Quantification
of number of frames where a track does not contain any detected spot (gap fractions). Smaller gap fractions indicate more stable detections. d) Depiction
of setting where an autofluorescent cycle of an adult mouse brain is obtained previously to an hybridization-based iST protocol of the same tissue. e) Top:
non-autofluorescent spots can be isolated by substracting the spots detected in the autofluorescence round from all detections in the FISH signal. Middle:
the same Spotiflowmodel used to retrieve the detections is then fine-tuned to detect only non-autoflorescent spots. Bottom: barplot depicting the amount
of autofluorescence detected (lower is better) on real test data before (baseline) any removal, after intensity-based removal (Intensity thresholding) and after
fine-tuning (fine-tuning). For a fair comparison, the intensity threshold for Intensity thresholding was chosen so that the amount of non-autofluorescent
spots is exactly the same as for fine-tuning.
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Figure 4: Assessment of spot detection performance on volumetric data with Spotiflow. a) Sample stack of the synthetic-3D dataset, which we use
for benchmarking. b) Benchmarking results for different methods on the dataset synthetic-3D. Learning methods with the sufÏx (2D) were run per plane
(YX) independently and then merged together to obtain 3D detections with the procedure implemented by [19]. deepBlink 3D is not shown as it does not
offer a native 3D implementation. F1[3] is depicted. c) Time (left) andmemory (right) scalability assessment of native 3Dmethods. Depicted are wall-clock
time (in seconds, left) and peak CPUmemory usage (in gigabytes (GB), right). d) Spot detection comparison on a 3D smFISH volume of Platynereis dumerilii.
A small amount of subvolumes were annotated, which were then used to optimize the parameters of LoG or fine-tune a Spotiflow 3D model. In the 3D
view (left), DAPI is shown in blue and raw Brn3 signal in orange. The Z-projections depict LoG detections at different thresholds τ as well as Spotiflow
detections (orange). e)Quantification of ratio of number of detections inside the tissue. Semantic segmentation was performed on DAPI in order to obtain
a tissuemask. f) Results of applying Spotiflow 3D to a large EASI-FISH stack [13]. The 3D views display an overview and an inset (without andwith Spotiflow
detections). A depiction of Spotiflow distributed capabilities is shown on the right, including runtime analysis using different numbers of GPUs. g) Lipid
droplet tracking with Spotiflow and TrackPy on a live-cell label-free volumetric movie. The Spotiflow model used was pre-trained on synthetic-3D and
fine-tuned on two frames of another movie.
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Figure 5: Spotiflow accessibility and integration a) Spotiflow is usable through a simplified Python API, which also allows loading pre-trained models.
b) Overview of the napari plugin of Spotiflow, offering pre-trained models for inference as well as a user interface for training and fine-tuning models.
c) Demonstration of Spotiflow in an end-to-end 3D imaging-based transcriptomics setting. Top: field-of-view of three STARmap 4-channel cycles of a
mouse brain volume [12]. Middle: Spotiflow can be plugged effortlessly into an existing Starfish [14] pipeline to enhance the spot detection task. Bottom:
transcripts corresponding to 16 different genes obtained with Starfish and Spotiflow.
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Methods
Spotiflow
Architecture overview
Given an input image and the corresponding spot center
annotations, a U-Net [22] is trained to predict two
different sets of outputs which encode the location
of spots in the image: first multiscale probability
heatmaps, and second, the stereographic flow (cf. Fig. 1b,
Supp. Fig. 1). During training, the overall loss function
optimized is

L = −
(

1 + λ1Spot
)(

Lheat + Lflow

)

(1)

where Lheat is the multiscale heatmap loss (see below),
Lflow the stereographic flow loss (see below) and 1Spot
is a pixel-wise indicator function which takes the value
1 if the pixel is very close to a spot location (closer
than some cutoff distance ε) and 0 otherwise. λ ∈
R is used to increase the loss contribution near spot
centers (cf. Supp. Note 3.1). We set λ = 10, ε = 5px
when training all our models.

Multiscale heatmap regression
Let X ∈ R

w×h denote the input image and {pk} with
pk ∈ R

2 denote the ground truth spot center annotations.
We first build a full resolution probability heatmap Y ∈
R
w×h by generating a Gaussian distribution of variance

σ2 centered at every spot so that the probability map
exponentially decays around the annotated centre.

Y (0)(x) = max
p∈{pk}

exp
(

−
‖p− x‖22

2σ2

)

∈ [0, 1] (2)

Note that instead of summing the individual Gaussian
distributions, we take the maximum value at each pixel
to create sharp boundaries between spots.
We further generate the heatmaps at L different
resolution levels, where level l = 0 denotes the highest
resolution and l = L− 1 the lowest. In order to generate
a heatmap at resolution level l (Y (l)) from l− 1 (Y (l−1)),
we apply max pooling (with a downsampling factor of
2) to Y (l) and then process the result with a Gaussian
filter of variance σ2

d with a scaling prefactor of 2πσ2
d ,

which effectively increases the variance of distributions
and ensures the dynamic range of the heatmap is in the
interval [0, 1] (cf. Supp. Fig. 1).
The U-Net backbone is then trained to regress all
heatmaps Y = {Y (l)}L−1

l=0 at the different scales
(multiscale heatmap regression, cf. Fig. 1c, Supp. Fig. 1).
We achieve this by adding a loss term at different stages
in the decoder whose size correspond directly to the
target to be regressed. More specifically, let D(i), i ∈
[1, L], denote the feature maps at the output of the
i-th decoder stage in the U-Net. We process D(i)

with a lightweight convolutional module to compute the
prediction Ŷ (L−i) (cf. Supp. Fig. 1). A pixel-wise loss term

is then computed between the ground truth heatmap Y (l)

and the prediction Ŷ (l) at every resolution level l with the
binary cross-entropy loss. We then aggregate this terms in
the overall objective function for the multiscale heatmap,
Lheat:

Lheat(Y, Ŷ ) =

L−1
∑

l=0

1

2l

[

Ŷ (l) log
(

Y (l)
)

+
(

1− Ŷ (l)
)

log
(

1− Y (l)
)]

(3)

Stereographic flow
For each pixel (i, j) ∈ Z

2 of the image X , we first define
a local vector field V = {vij} = {(vx, vy) ∈ R

2}
given by the vector from the pixel to the nearest ground
truth spot (cf. Fig. 1b, Supp. Fig. 2). To induce stability
and improve modelling at points far from spot locations,
we make use of a scaled inverse stereographic projection
f : (vx, vy) ∈ R

2 → (v′x, v
′
y, v

′
z) ∈ S2 defined as

v′x =
2svx

r2 + s2
, v′y =

2svy
r2 + s2

, v′z = −
r2 − s2

r2 + s2

with r2 = v2x + v2y and v′
2
x + v′

2
y + v′

2
z = 1

(4)

where s ∈ R
+ is a fixed length scale (we set s =

1). We define the stereographic flow V ′ = {v′ij}
as the result of applying f to each component of the
local vector field vij . Effectively, we represent each
element of the local vector field as a point on the unit
3D sphere S2 (note that this generalizes to arbitrary
dimensions). In particular, f maps the zero vector
(0, 0) to the north pole (0, 0, 1) and all vectors with
infinite length (“points at infinity”) to the south pole
(0, 0,−1). The stereographic flow is computed using an
extra lightweight convolutional module operating at the
highest resolution (cf. Supp. Fig. 1). The corresponding
loss function is a pixel-wise weighted L1 loss Lflow

between the ground truth stereographic flow V ′ = {v′ij}

and the prediction V̂ ′ = {v̂′ij}:

Lflow(V
′, V̂ ′) =

∑

i,j

||v′ij − v̂′ij ||1 (5)

Note that, by construction, v′ij and v̂′ij lie on the
three-dimensional unit sphere S2 yielding a bounded
target to be regressed.
Let S′2 = S2 \ {(0, 0,−1)} denote the set of
all points in the unit sphere S2 but the south pole.
The stereographic flow can be analytically inverted
position-wise by applying the stereographic projection
f−1 : (v′x, v

′
y, v

′
z) ∈ S′2 → (vx, vy) ∈ R

2:

vx =
sv′x

1 + v′z
, vy =

sv′y

1 + v′z
(6)
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We note that despite the stereographic projection being
undefined at the south pole (0, 0,−1), in practice we only
invert the stereographic flow at positions that are close to
a spot, which are embedded far from the south pole.

Inference
To retrieve the spot centers from the two outputs of
the network (i.e. multiscale heatmaps and stereographic
flow), we first detect all local maxima in the highest
resolution predicted heatmap Ŷ (0). These local maxima
are filtered so than only those above a specific threshold
(probability threshold t ∈ [0, 1]) are kept. This threshold is
optimized right after training on the validation data and
thus does not need to be set explicitly during inference.
This procedure results in a set of points {(xk, yk)} where
xk, yk ∈ Z.
These points are then refined using the stereographic
flow to achieve subpixel precision by adding the
corresponding predicted vector at every position.
Specifically, let V̂ denote the pixel-wise stereographic
projection of the predicted stereographic flow V̂ ′, so that
the vector at position ij v̂ij ∈ R

2. We generate the final
set of points {pk}, which correspond to the spot centers,
as {pk = (xk, yk) + v̂xkyk}, where {(xk, yk)} are the
local maxima extracted from the full resolution heatmap
and pk ∈ R

2, thus allowing the prediction of non-integer
(subpixel-precise) spot centers.

3D architecture
The architecture of the 3D model follows the same
principles as the 2D model (see above) but using
3D convolutions instead. The target tasks (multiscale
heatmap regression and stereographic flow) are naturally
extensible to an arbitrary number of dimensions by
adapting accordingly. First, the multiscale heatmap is
generated in 3D using the same procedure as described
above using Eq. (2). The stereographic flow V ′

(3) = {v′ijl}
is obtained by applying the scaled inverse stereographic
projection f(3) : (vx, vy, vz) ∈ R

3 → (v′x, v
′
y, v

′
z, v

′
w) ∈

S3 ⊂ R
4, which is defined in a similar fashion to Eq. (4):

v′x =
2svx

r2 + s2
, v′y =

2svy
r2 + s2

v′z =
2svz

r2 + s2
, v′w = −

r2 − s2

r2 + s2

(7)

with r2 = v2x + v2y + v2z

and v′
2
x + v′

2
y + v′

2
z + v′

2
w = 1

As in the 2D case, f(3) can be analytically inverted with
the stereographic projection f−1

(3) : (v′x, v
′
y, v

′
z, v

′
w) ∈

S3 → (vx, vy, vz) ∈ R
3:

vx =
sv′x

1 + v′w
, vy =

sv′y

1 + v′w
, vz =

sv′z
1 + v′w

(8)

so subpixel-accurate locations can be computed.

While the model architecture is conceptually similar to
the 2D counterpart, 3D computations are much more
computationally expensive. To alleviate the workload and
allow fast inference times on regular hardware, the 3D
model allows predicting on a downsampled version of the
output (gridding) similarly to the 3D implementation of
Stardist [32].
Let h, w and d denote the height, width and depth
respectively of the input volume. Let g be the gridding
(output downsampling) factor, which for simplicity we
assume to be equal for every dimension. The input
is first downsampled to size

(

h
g
, w
g
, d
g

)

with a stem
(specifically, a g-strided 3D convolutional module). The
output of the stem is processed with the same backbone
architecture as described before (a 3D U-Net), which
yields a

(

h
g
, w
g
, d
g

)

-shaped volumetric heatmap as well as

a 4-dimensional stereographic flow of size
(

h
g
, w
g
, d
g
, 4
)

.

The training must be ”gridding-aware”, as it is inherent
to the model architecture. In order to train the network,
simply subsampling the targets would be suboptimal as
it does not yield proper encoding of spots located at
coordinates which are not multiples of g (from now on,
non-g-aligned). Therefore, downscaled versions of the
heatmap (gridded heatmaps) are produced with a slight
variant of Eq. (2) which ensures that the pixel coordinates
closest to non-g-aligned spots achieve the maximum
possible value, which is 1. Moreover, the gridded
stereographic flow is constructed so that non-g-aligned
spots can be perfectly recovered, which can be thought
as a built-in natural interpolation procedure. This
ensures that coordinates other than multiples of g can
be accurately retrieved without any loss of information
as long as the distance between two spots is ≥ g. To
illustrate with an example, let us assume that g = 2
and that there is a spot p at the location (3, 2, 15) in the
original volume. Ideally, the heatmap peak localization
(in the downsampled output space) is p̂H = (1, 1, 7)
and the inverted stereographic flow at that position is
v̂ = (0.5, 0, 0.5). Thus, we can recover the original spot
location as p̂ = g(p̂H + v̂) = g(1.5, 1, 7.5) = (3, 2, 15).
We note that gridding effectively brings down the ability
of Spotiflow to separate spots that are very close
together (closer than g). Nevertheless, we have found
using g = 2 it to be a good tradeoff between performance
and speed, obtaining considerable speedup (∼ 10x) at
a marginal performance cost in most real settings. All
results of Spotiflow3Dpresented in the paper have been
obtained with g = 2.

Spot detection benchmarking
Datasets (synthetic)
The dataset synthetic-simple was generated by randomly
generating spot locations and placing Gaussian
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distributions with σ = 1.5 and varying intensity
on a blank image, after which Poisson and Gaussian
noise is added. The dataset synthetic-complex was
generated similarly but instead of Gaussian spots we
simulated realistically aberrated point-spread functions
(PSFs) using the approach described in [33] and added
fluorescence DAPI background, Gaussian noise, Perlin
noise and Poisson noise at different levels yielding
images with different SNRs across the dataset. Different
densities (i.e. number of spots) were used to mimic
different sparsity of real data. The dataset synthetic-3D
was isotropically generated using the same procedure
of synthetic-complex, but without the addition of DAPI
fluorescence background.

Datasets (real)
We gathered the datasets HybISS, Terra and Telomeres
by randomly cropping square tiles of width 512 and/or
1024 from different acquistions (see below). The dataset
MERFISH was compiled by using raw images from [34]
which we hand-annotated with napari [21]. In order to
speed up the annotation process, we used initial solutions
obtained from LoG and/or other Spotiflow models
that we iteratively refined by adding, removing and/or
moving the proposed spot centers. Different contrasts
were considered when annotating to take into account
potential uneven illumination. The annotated smFISH
dataset was used as released in [19].
Dataset preprocessing
Images were preprocessed equally for each method by
normalizing them using percentile-based normalization:

Inorm(x, y) =
I(x, y)− Ipmin

Ipmax − Ipmin

where Ip denotes the p-th percentile of the image
intensity. We set pmin ∈ {1, 3} and pmax = 99.8
throughout our experiments. The same normalization
procedure was performed in the 3D case.

Parameter tuning
Parameters specific to LoG (intensity threshold) and
Big-FISH (variance of the filters) were optimized on the
training split of each dataset. We did not optimize the
intensity threshold on Big-FISH as the software has a
custom threshold optimization procedure which works
on an image-by-image basis. For RS-FISH, we optimized
its parameters on the test split (thus overestimating
its performance) due to the high computational load
required and the large number of parameters that can be
tuned (cf. Supp. Note 3.3). Learning methods (deepBlink
and Spotiflow) were trained on the training split
using their default configuration without performing any
hyperparameter tuning (cf. Supp. Note 3.3). All reported
scores are on the test split of the datasets.

Spotiflow (general) model
In order to assess the potential capacity of Spotiflow
models, we trained the general model on a dataset
gathered by merging all real 2D datasets (HybISS,
MERFISH, smFISH, Telomeres, Terra) as well as the
dataset synthetic-complex.

Metrics
To compute overall detection metrics for each image, we
first uniquely match ground truth {pi} and predicted
spots {p̂j} according to their spatial proximity via
hungarian matching [35]. We then define a spatial cutoff
c ∈ R and count amatchedpair (p, p̂) as true positive (TP)
if their Euclidean distance d(p, p̂) ≤ c, a predicted spot p̂
as false positive (FP) if there was nomatched ground truth
spot, and a ground truth spot p as false negative (FN) if
there was no matched predicted spot. We then define the
following metrics for each image

F1[c] =
|TP |

|TP |+ 1
2(|FP |+ |FN |)

(9)

AP [c] =
|TP |

|TP |+ |FP |+ |FN |
(10)

(11)

We also report the F1AuC [19] (cf. Supp. Note 3.2),
which takes into account different spatial cutoffs:

F1AuC [cL;cH ] =
1

cH − cL

∑H−1
k=L F1[ck] + F1[ck+1]

2
∆

with L < H, cL < cH

(12)

where ∆ is a constant defined as ck+1 − ck for any
k ∈ [L,H). Finally, we adapt the Panoptic Quality
segmentation metric [36], which incorporates the spatial
localization accuracy, to the spot detection task. We refer
to it as the Panoptic Localization Quality (PLQ):

LA[c] =
1

|TP |

∑

(p,p̂)∈TP

1−
max(d(p, p̂), c)

c
(13)

PLQ[c] = LA[c] · F1[c] (14)

whereLA is the localization accuracy (cf. Supp. Note 3.2).
We report results at c = 3, cL = 1 and cH = 5.

Scalability assessment
In order to assess the scalability of different 2D
methods (cf. Fig. 1e, Supp. Note 3.4), we used images of
different sizes which were all obtained by consecutively
expanding a center crop from a full HybISS cycle (see
below). In the 3D case, a simulated stack from the dataset
synthetic-3D (of original size 32×128×128) was replicated
along each dimension to obtain larger volumes. The
method deepBlink was not run on 3D as it cannot handle
volumetric stacks natively.
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Given the dependency of intensity-based methods on
the number of spots, their parameters were set so
that the number of detections were in the same order
of magnitude across all methods. Ellapsed time and
memory consumption were obtained the Unix’s time
module. Intensity-based methods were run on an AMD
Ryzen Threadripper PRO 5965WX 24-Cores CPU with
256GB of memory. Learning methods (deepBlink and
Spotiflow) were run on an NVIDIA GeForce RTX 4090
GPU (24GB).

Spatial transcriptomics experiments
Tissue collection and preparation
All animal procedures were in accordance with the Swiss
Federal Veterinary OfÏce guidelines and as authorized
by the Cantonal Veterinary Authorities and the Cantonal
Commission for Animal Experimentation under the
following licenses: cantonal animal license number
VD3651 and national animal license number 33167 for
mouse samples as well as cantonal animal license number
VD3652c and national animal license number 33237 for
frog tadpole samples.

Mouse embryos and frog tadpole samples
Mouse embryos at E12.5 and E13.5 were collected from
wild-type CD1 pregnant mice dissecting out from the
uterine horn in ice-cold PBS. Nieuwkoop and Faber
(FB) stage 58 frog tadpole samples were collected in
PBS. Immediately after collection, fresh tissues were
cryopreserved in optimal cutting temperature (OCT) and
stored at -80 °C until sectioning. Tissues were sectioned
with a cryostat (Leica CM3050 S) at 10 µm, placed on
SuperFrost Plus microscope slides, and stored at -80 °C
until HybISS processing.

Mouse gastruloid generation
Gastruloid generation was performed as previously
described in [37]. Briefly, mouse embryonic stem
cells (mESCs) (EmbryoMax 129/SVEV, gifted by Denis
Duboule Lab) were cultured in gelatinized tissue culture
dishes with 2i LIF DMEM medium consisting of DMEM
+ GlutaMAX (Gibco 61965-026) supplemented with
10%mES-certified FBS (Gibco 16141-079), non-essential
amino acids (Gibco 11140-035), sodium pyruvate
(Gibco 11360-039), beta-mercaptoethanol (Gibco
31350-010), penicillin/streptomycin (Gibco 15140-122),
100 ng ml-1 mouse LIF (EPFL Protein Facility), 3 µM
CHIR99021 (Calbiochem: 361559) and 1µMPD0325901
(Selleckchem S1036). Cells were passaged every 2-3 days
and maintained in a humidified incubator (5% CO2,
37°C). mESCs were collected after trypsin treatment,
washed, and resuspended in prewarmed N2B27 medium
(50% DMEM/F12 (Gibco 31331-028), 50% Neurobasal
medium supplemented (Gibco 21103-049) with 0.5x
N2 (Gibco 17502-048), 0. 5x B27 (Gibco 17504-044),
non-essential amino acids (Gibco 11140-035), sodium

pyruvate (Gibco 11360-039), beta-mercaptoethanol
(Gibco 31350-010), 0.5x Glutamax (Gibco 35050-061)
and penicillin/streptomycin (Gibco 15140-122). A total
of 300 cells were seeded in 40 µl of N2B27 medium in
each well of a 96-well plate with a rounded bottom and
low adherence (Thermo Fisher, 174925). Forty-eight
hours after aggregation, 150 µl of N2B27 medium
supplemented with 3 µM CHIR99021 was added to each
well. A total of 150 µl of medium was replaced every 24
h. Gastruloids were collected and flash-frozen 120 h after
aggregation.

Radial glia progenitor culture
E11.5 mouse brains were collected from wild-type
CD1 pregnant mice in ice-cold EBSS (14155-048,
Life-technologies). Meninges were removed using
fine-tipped forceps under a dissection stereomicroscope
(Nikon SMZ18). Then, brainswere fragmented into small
pieces, transferred to a 50ml plastic tube, and digested for
30-45 min at 37 °C in 5 ml of solution containing 1mM
CaCl2, 1 mM MgCl2, 100 U/ml of DNAse I (LS02058
Worthington, Lake Wood NJ), and 20 U/ml of previously
activated papain (Sigma L2020). After that, the cell
suspension was briefly decanted, transferred into a 15-ml
plastic tube, and centrifuged at 300 rcf for 5 min at
4°C. Then, the cells were resuspended in 3ml of EBSS,
and the suspension was transferred into a 15 ml plastic
tube containing 3ml of papain inactivating solution
containing 50% FBS/50% EBSS. Cells were centrifuged at
300 rcf for 5 min at 4°C and then resuspended in culture
media consisting of Neurobasal medium (21103049, Life
Technologies) supplemented with L-glutamine (Gibco;
cat. no. 25030- 123), B27 (Gibco; cat. no. 17504-044),
Gentamicin (15750037, Life Technologies), and 20 ng/ml
of Epidermal growth factor (EFG, PeproTech catalog no.
AF-100-15). Finally, cells were seeded on 8 well chamber
slides (80841, IBIDI) and incubated in a humidified
37°C incubator at 5% CO2 for 48 hours until HybISS
processing.

In-situ sequencing by HybISS
To process all samples (apart from the adult mouse brain,
see below) HybISS [9] was performed as published at
protocols.io [38]. For embryonic mice, target genes
were selected based on marker genes with expression
within the target regions at the target developmental
stages. Samples were imaged either on a Leica DMi8
epifluorescence microscope equipped with LED light
source (Lumencor SPECTRA X, nIR, 90-10172), sCMOS
camera (Leica DFC9000 GTC, 11547007) and 20x
objective (HC PC APO, NA 0.8, air) yielding a pixel size
of 0.34µm, or on a epifluorescence microscope Nikon
Eclipse 90i equipped with LED light source (Lumencor
SPECTRA X, nIR, 90-10172), CMOS camera (Nikons DS
Qi2) and 20x objective (CFI PLAN PC, NA 0.75, air)
yielding a pixel size of 0.15µm. In both microscopes,
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samples were imaged with 10% overlap between tiles to
cover the entire tissue and between 8 and 12 z planes
were acquired with 1 μm spacing among them. A full
experiment results in a multicycle, multichannel image
stack (5 cycles and DAPI + 4 HybISS signal channels)
image stack.
To process the adult mouse brain used for the
autofluorescence removal experiment (cf. Fig. 3d,e),
HybISSwas performed on fresh frozen 6weeks oldmouse
brains 10µm sections, using a Phi29 enzyme (NxGen
F83900-1). Images were acquired using a 20X 0.8NA
objective on a Zeiss AxioImager Z1Wiedfieldmicroscope
with a PCO.edge 4.2bi camera. The microscope was
controlled via MicroManager. Exposure times were,
in order of acquisition: 3ms for DAPI (Zeiss filter
set 49: G365, FT 395, BP445/50), 450ms for 750nm
(filters: Alluxa ultra 740.5-35 OD6, 766, 801.5-50 OD6),
300ms for 650nm (chroma BP 640/30, FT ZT640rdc,
ET680/40), 300ms for 550nm (filters BP546/12, LP
T560lpxr, ET590-50), and 200ms for 488nm (chroma
filters BP450-490, T510, ET 525/36). 130 tiles of
2048x2028 pixels with a 10% overlap were acquired to
cover the entire tissue, with a pixel size of 0.3225µm.
Each tile was a z-stack of 11 planes with a 0.8µm step size.
Rounds of probe hybridization, imaging and stripping
were performed with a modified Labsat microfluidics
device from Lunaphore, allowing us to place the stainer
chamber under the microscope. A quenching buffer
(Lunaphore BU08) was used to reduce autofluorescence
before bridge probe hybridization and an imaging buffer
(Lunaphore BU09) was used during imaging.

Image processing
Projection, stitching and alignment
To yield 2D images the acquired stacks were reduced
using either maximum intensity projection (MIP) or
a custom implementation of extended depth-of-field
(EDF, [39]). Tiled acquisitions were stitched together into
amosaic image with Ashlar [40], which uses a variant of
phase correlation [41] to compute the offset between the
different tiles at subpixel precision [42] in a simultaneous
fashion. Only the DAPI channel was used to retrieve
the stitching coordinates, and different cycles in the same
experiment were stitched independently. After obtaining
the mosaics for all cycles in an experiment, we registered
them with wsireg [43], which uses elastix [44, 45] as a
backend. We allow for rigid-body alignment as well as
non-linear warping, which we found did not aggresively
deform the sample and was able to align fine details
properly. We only used the DAPI channel for inter-cycle
registration.

Spot detection (Spotiflow)
All results with Spotiflow were obtained using
a Spotiflow network trained on the HybISS

dataset (cf. Fig. 1b, Fig. 1c, Supp. Fig. 4, Supp. Note 2)
to detect diffraction-limited spots independently across
cycles and channels. The probability threshold used was
optimized from the validation data of theHybISS dataset.

Spot detection (LoG/starfish)
We ran LoG using starfish’s implementation, which is
based on scikit-image [46], and used different intensity
thresholds including the ’optimal’ one (0.138) which was
computed from the training data of the HybISS dataset.
To ensure a fair comparison, we detected transcripts
independently across cycles and channels as done for
Spotiflow.
Gene decoding
To extract gene expression maps the detected transcripts
were assigned a gene using starfish’s implementation
of an intensity-based nearest-neighbor decoder. When
decoding spots detected via Spotiflow, we fed the
decoder the spot probabilities output by the network
instead of their raw intensity. Gene expression heatmaps
were obtained by performing Gaussian kernel density
estimation (KDE) with variance σ2 = 5 on the gene
signal. The heatmaps were clipped to (0, 1) after applying
percentile-based normalization with pmin = 0, pmax =
99.9.
Time/memory benchmarking
To compare the time and memory efÏciency of starfish
and Spotiflow in an end-to-end setting (cf. Fig. 2e,
Fig. 2f), we used Unix’s time module. We detected spots
on an E12.5 mouse embryonic brain using LoG on the
maximum intensity projection of the input along the cycle
and channel dimensions, as done in previous studies [9,
47]. The spot intensities were then traced back along
the non-projected input to retrieve the intensity of spots
at the different cycles and channels. For Spotiflow,
the detections were done independently on each cycle
and channel as it is computationally affordable for larger
image sizes.

Zero-shot autofluorescence removal
We first built a dataset from a single experiment
consisting of a regular HybISS acquistion preceded
by imaging an only-autofluorescence cycle. After
registering both images, we then detected spots (using
the Spotiflow model trained on the HybISS dataset)
in one channel (corresponding to 750nm) of the
autofluorescence cycle and the same channel of the first
HybISS cycle. We generated the non-autofluorescent
ground-truth by substracting all the autofluorescent
detections that matched (at spatial cutoff c = 3) to a
detection in the HybISS channel. We generated three
spatially-disjoint splits from this experiment (training,
validation and test). We finally fine-tuned the Spotiflow
model pre-trained on HybISS on the generated training
dataset to predict the non-autofluorescent spots.
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Quantification is reported on the test split (cf. Fig. 3d,e).

Live-cell imaging experiments (2D)
Tissue collection and preparation
HeLa cells expressing endogenously tagged Halo-TRF1
were labelled with Janelia Fluor 646 Halo ligand
(Promega) in order to mark telomeres. To visualize
TERRA, ectopically expressed 15q-TERRA species were
tagged with PP7 stem-loop structures that were bound
by phage coat protein fused to GFP (PCP-GFP). Live
cells were imaged using a Nikon Confocal Spinning
Disk microscope equipped with two Photometrics Prime
95B cameras and sCMOS Grayscale Chips. Imaging
was performed with a 100x objective in an equilibrated
incubation chamber at 37°C and 5% CO2. Images were
acquired as multi-channel single planes at a rate of 20
frames per second (50 ms exposure, 200 frames per
movie).
Movie processing
Resulting movies were first afÏnely aligned on Fiji [48]
(using the descriptor-based registration (2d/3d) [49]
plugin) to an image with fluorescently labelled beads as
a reference. Movies were first spatially cropped so that
each crop contains only one cell. In each crop, spots were
detected independently per frame and channel, where
one channel contains the Telomeres marker and the other
the TERRA marker, using the deepBlink and Spotiflow
models trained on the Telomeres and Terra datasets.
The optimized probability threshold on each dataset was
used for Spotiflow. For deepBlink, the probability
threshold was set to the default (0.5). Single particle
tracking was performed using Trackmate [24] with a
spot radius of 0.15 µm and simple LAP tracking with
the following parameters for Telomeres/TERRA: linking
maximum distance 0.22/0.60 µm, gap-closing maximum
distance 0.44/1.0 µm and gap-closing maximum frame
gap 10 frames.

Platynereis dumerilii 3D smFISH
Data acquisition
Fixation of 6dpf P. dumerilii larvae for in situ HCR
RNA-FISH Platynereis dumerilii worms were kept in
continuous culture at EMBL Heidelberg. For details on
P animal culture, see [50]. Every batch was generated
by mating one pair of male and female adult worms
inside a glass Becker with artificial sea water (ASW).
Each batch was then incubated at 18°C. At the 6th day
post fertilization, batcheswere collected, poured together,
and filtered with ASW in a cell strainer. Animals were
incubated with 50 µg/ml ProteinaseK in PTW (0.1%)
Tween20 in PBS, DEPC treated) for 3’ at RT, washed in
ASW, and anesthetized for 1’ in NoCa2+-NoMg2+ ASW.
Animals were then fixed in 4% PFA in PTW for 2h at
room temperature (RT), followed by 5x 5’ washes in PTW.
Animals were dehydrated in increasing concentrations of

Ethanol (25-50-75% EtOH in PTW) for 5’ each, washed
4x 5’ with 1ml Ethanol, and then stored for a maximumo
of 6 months at -20°C.

HCR RNA-FISH (v3.0) probe sets, amplifiers and
buffers HCRTM RNA-FISH (v3.0) DNA probes
targeting the coding sequences of P. dumerilii POUIV and
Prox genes were designed and synthesized by Molecular
Instruments® (MI) (molecularinstruments.com). Probe
sets included 14 and 20 probe pairs respectively. The
reference transcript sequences can be found on GenBank
at the following accession numbers: Pdu-POUIV,
KC109636; Pdu-Prox, FN357281. The correspondent
coding sequences used for the probe design are listed
in the supplementary table. DNA HCR amplifiers,
hybridization, wash and amplification buffers were
purchased from MI. The probe sets, amplifiers and
fluorophores combinations used for this experiment
were the following: POUIV-B3_Amplifier-Alexa
546,Prox-B1_Amplifier-Alexa 647.

Whole-mount in situ HCR RNA-FISH (v3.0) of 6dpf
P. dumerilii larvae Animals stored in ethanol at
-20°C were rehydrated at RT in decreasing alcohol
concentrations (75-50-25% EtOH in PTW for 5’
each) and washed 3x 5’ in PTW. Samples were then
permeabilized with 100 mug/ml ProteinaseK in PTW
for 3’, washed twice for 30’ in 20 mg/ml Glycine/PTW,
and rinsed 3x in PTW. Animals were post-fixed for 20’
in 4%PFA in PTW, followed by 5x 5’ washes in PTW.
The following is an adaptation of HCRTM RNA-FISH
(v3.0) protocol of MI. The original protocol with buffers
composition can be found in [51]. Animals were
transferred in 1.5ml tubes and incubated in 200µl HCR
hybridization buffer (containing 10mM VRC) at 37°C.
After 30’ pre-hybridization, HCR probes, pre-diluted in
50µl HCR hyb. buffer, were added to the mixture at
a final concentration of 4nM in 250µl. Samples were
hybridized over night (O/N) at 37°C (∼=15-17h), shaking
at 800rpm in a thermomixer. Samples were washed 5x
15’ in 1ml HCR probe wash buffer at 37°C. Samples
were then washed 3x5’ in 5XSSCT (0.1% Tween20 in
5XSSC) at RT. Samples were incubated in 100µl HCR
amplification buffer at 25°C. In the meanwhile, HCR
hairpins were heated in 0.2ml PCR tubes at 95°C for 90”
and then slow-cooled at RT in the dark for 30’. After
30’-1h of pre-amplification, HCR hairpins were diluted
in 50µl HCR amp. buffer and added to the mixture at
a final concentration of 60nM in 150µl. Samples were
amplified O/N at 25°C (∼=15-17h), shacking at 800rpm
in a thermomixer. Following amplification, samples were
washed at 25°C in 1ml 5XSSCT 2x 5’, 2x 30’, followed by a
final 1ml wash. Samples were either directly mounted for
microscopy or stored in 5XSSCT at 4°C for a maximum
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of one week.

Autofluorescence quenching, nuclear counterstain,
andmounting HCR-stained samples were treated with
150µl Vector® TrueVIEW® Autofluorescence Quenching
Kit for 2’ at RT, followed by 1ml 5XSSCT washes, 2x
1’ and 2x 5’. Samples were then stained with 5 µg/ml
DAPI in 0,5ml 5XSSCT for 30’, followed by 3x 5’ 1ml
5XSSCT washes. Animals were mounted in ProLong™
Glass Antifade Mountant between two 1.5H coverslips
glued together by 0.12mm thick SecureSeal™ Imaging
Spacer.

Microscopy and imaging parameters Samples were
imaged with a Leica TCS SP8 confocal microscope using
an HC PL APO 40x/1.30 OIL CS2 objective. The zoom
factor was adjusted to fit an entire larvae in the field of
view with a pixel size of 129nm and an image format of
2048x2048px. Z-stacks of whole larvae were acquired
with a z-step size of 0,5 µm. Three sequential by-frame
scans using HyD detectors acquired fluorescence signals
from DAPI, Alexa Fluor 546, and Alexa Fluor 647 dyes,
excited by 405nm, 561nm, and 633nm laser wavelengths,
respectively. Mounting the larvae between two coverslips
allowed the scanning from both the ventral and dorsal
sides of each specimen to compensate for the loss of signal
quality, due to light scattering, in deeper optical slices,
resulting in two views of the same sample.

Image analysis
Two views were combined using a three-step registration
procedure, and a composite volume was created based on
the registered views. Only the DAPI channel was used for
finding the transform, but the transformwas applied to all
channels.

Pre-alignment During data acquisition, the animal can
be positioned arbitrarily. Both images were smoothed
using an intensity threshold to obtain a point cloud. Then
principal component analysis (PCA) was performed on
the point cloud and the image was rotated to align the
first principle component with the x-axis. After that, an
heuristic approach was used to make sure that all animals
have the same orientation (with the head of the animal
towards 0), based on the fact that the head of the animal
has more signal than the rest of the body.

Rigid alignment Pre-aligned images were registered
using the Euler transform implemented in elastix [44, 45].
First, the registration was done by optimizing the mutual
information metric with 5 levels in the image pyramid
schedule (64, 32, 8, 4 and 1) and 20000 spatial samples for
the metric and gradient estimations. In the second step,
rigid registration was done by optimizing the normalized

correlation coefÏcient (NCC) using 5 levels in the image
pyramid schedule (16, 8, 4, 2 and 1) and 50000 spatial
samples.

Deformable alignment Due to small deformations
resulting from the sample handling between the
acquisition of the views, it was not possible to fully
register two views using only rigid registration. elastix’s
B-Spline deformable registration was used as the last
registration step. The metrics optimized were the NCC,
the mutual information along with a rigidity penalty with
the corresponding weights of 1, 1 and 100. Registration
was performed in one step at the original resolution
with the final grid spacing of 64 voxels in the Y and X

directions and 16 voxels in the Z direction using 100000
spatial samples for the metric and gradient estimations.

Composite volume Small inaccuracies in registration
of the two views can cause duplication of the spots,
therefore instead of directly averaging the registered
views, a composite volume was constructed. The DAPI
channel of both registered images was smoothed using a
Gaussian of kernel size (10, 20, 20) (ZYX). The volume
was then split into the areas where one of the smoothed
views had higher intensity than the other, and this mask
was used to create a weighted average of the views.

Spot detection with Spotiflow The Spotiflow
model used was pre-trained on the synthetic-3D dataset
(with g = 2) and then fine-tuned for 400 epochs on nine
annotated subvolumes and validated on six annotated
subvolumes. The spot probability threshold used for the
predictions is 0.4.

Spot detection with Laplacian-of-Gaussian (LoG)
The scikit-image implementation of the LoGblob detector
was usedwithσ ∈ [1, 3] and different intensity thresholds
(from 0.1 to 0.7 in steps of 0.05). In order to scale to
the full volume, we apply the LoG blob detection in a
sliding window approach in windows of size (32, 128,
128) (ZYX).

Semantic segmentation of DAPI channel A tissue
semantic segmentation mask was obtained by using
Otsu’s thresholding on the DAPI channel followed by
morphology operations in order to remove small objects
(< 100px.) and small holes (< 100px) with an area
opening and an area closing respectively. A closing
with a cubic structuring element of (3,3,3) (ZYX) was
then performed followed by a dilation of a (3,9,9) (ZYX)
cuboid in order to expand the mask a few voxels from the
stained nuclei.
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EASI-FISH and distributed inference
The Spotiflow model pre-trained on the dataset
synthetic-3D and fine-tuned on the 3D smFISH
Platynereis dumerilii annotated subvolumes (see above)
was used to detect spots on a 159GB EASI-FISH volume
of a lateral hypothalamus section of a mouse brain [13].
To speedup inference, we wrote a custom parallelization
procedure which distributes overlapping tiles across
different GPUs. While overlapping tiles are widely used
to runCNNs on nonGPUmemory-fitting inputs in order
to avoid border artifacts, we also exploit the strategy
to distribute these tiles across different GPUs, achieving
quasi-linear speedup w.r.t. the number of GPUs. The
procedure is based on the tile iterator implemented in
the Python package csbdeep [52], which we wrap as
a torch.data.utils.Dataset instance as well as includes a
custom dataloading sampler adapted from [53]. As
data needs to be lazily loaded due to its large size, the
ability of torch.data.utils.DataLoader to spawn several
workers allows loading the next tiles (pre-fetching)
asynchronously, greatly reducing I/O bottlenecks. After
the workload of each GPU is finished, shapes of the
tensors containing spots are sent to the process of the
main GPU, which uses them to generate appopriate-sized
empty tensors which will finally be filled by gathering
the spot results of each GPU. Distributed prediction can
be run using the torch.distibuted protocol seamlessly in a
system where the amount of GPUs is greater than 1 using
torchrun.
3D lipid droplet tracking
Data acquisition
COS7 cells were cultured in Dulbecco’s modified Eagle’s
mediume (DMEM) supplemented with 10% fetal bovine
serum and were incubated at 37°C with 5% CO2. Cells
were patterned wither by following either [54] or by
light-induced fibrinogen printing controlled by a PRIMO
micropatterning machine (Alvéole, France) mounted
on an inverted microscope (Olympus IX81, Japan).
Time-lapse imaging of patterned cells was performed
by using a 3D Cell Explorer-fluo microscope (Nanolive,
Switzerland) with 2 second time interval and a voxel size
of (360, 200, 200)nm (Z,Y,X) in phenol-red-free DMEM
at 37°C with 5% CO2, .
Image analysis
In order to to fine-tune the Spotiflowmodel pre-trained
on the dataset synthetic-3D, the first two frames of one of
the volumetric movies were annotated using napari. The
Spotiflow network was then fine-tuned for 10 epochs
on the two frames, which were treated as independent 3D
stacks.
The fine-tuned Spotiflow model was posteriorly used
to detect spots (corresponding to the lipid droplets) in
an out-of-training movie across the whole duration (200

frames). The localizations were tracked across time
using the Crocker-Grier algorithm [55] implemented in
Trackpy [28], using a gap closing of 2 and a search radius
of 5px. Tracks shorter than 20 frames were discarded.
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